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Abstract

While parameters are crucial components of cognitive models, relatively little
importance has been given to their units. We show that this has lead to some pa-
rameters to be contaminated, introducing an artifactual correlation between them.
We also show that this has led to the illegal comparison of parameters with different
units of measurement – this may invalidate parameter comparisons across partic-
ipants, conditions, groups, or studies. We demonstrate that this problem affects
two related models: Stevens’ Power Law and Rachlin’s delay discounting model.
We show that it may even affect models which superficially avoid the incompatible
units problem, such as hyperbolic discounting. We present simulation results to
demonstrate the extent of the issues caused by the muddled units problem. We of-
fer solutions in order to avoid the problem in the future or to aid in re-interpreting
existing datasets.
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1 The incomparable units problem

1.1 A demonstration with Stevens’ Power Law

Stevens’ 1975 power law is wrong. It is wrong because it is parameterised incorrectly—so
that the units of one parameter are muddled with the value of another parameter. The
concepts of dimensional invariance (Fourier, 1822; Krantz, 1972; Maxwell, 1891; Stewart,
Scheibehenne, & Pachur, 2018) and meaningfulness (Falmagne, 1985; Falmagne & Narens,
1983) can be applied in mathematical models of psychology, by considering the units of
psychological parameters. In Stevens’ power law, the psychological magnitude ψ(I) of
physical magnitude or intensity I is given by

ψ(I) = λIa. (1)

Let’s consider the perception of visual length, and particularly of lines. If length is
measured in the International System of Units (SI) of metres (m), then I has units of
m. This means that Ia has units of ma. If ψ(I) is to be a unitless psychological scale,
or at least a scale with its own psychological units, then it must be free of the physical
units. This means that λ must have the reciprocal units of Ia so that the units cancel
out. Thus λ must have units of 1

ma = m−a. The key problem here is that λ has units
which depend upon a. Stewart et al. (2018) have shown, for similar models, how this will
lead to estimates of λ and a that are highly correlated, and that it is illegal to compare
λ values across, for example, individuals with different values of a. When a differs, the
units of λ differ, and comparing magnitudes with different units is not permitted.

We have highlighted a problem with the units of λ in Stevens’ law, though λ is often
not the parameter of core interest in psychophysical modelling. Instead it is the expo-
nent a that is of primary consideration. The exponent a has been tabulated, in reviews
of the experimental literature, for more than 20 physical continua, including loudness,
brightness, length and area, tastes and smells, temperature, pressure, texture, vibration,
weight, duration, and even electric shocks. The λ parameter is of lesser theoretical in-
terest, because it is determined, in part, by the properties of the judgement scale for ψ.
For example, λ will differ depending on whether the scale runs from 0–10 or 0–100. But
later in this paper, when we are considering temporal discounting, the analogue of λ is
of core theoretical interest.

1.2 Fechner’s Law is dimensionally correct

In contrast to Stevens’ law, Fechner’s 1860/1966 law

ψ(I) = λ ln

(
I

I0

)
(2)

is a meaningful and dimensionally invariant law. The ratio of the physical quantity I
and the threshold physical quantity I0 (at which the perception ψ(I) is zero) is unitless,
because the units of I and I0 cancel in the ratio. Logarithms are also unitless—they
are the power to which the base of the log must be raised, and powers are unitless real
numbers. This means that λ need have only whatever unit required to match the scale
of ψ(I) is measured in.
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1.3 Fixing the units in Stevens’ Law

We propose the modified Stevens’ Power Law:

ψ(I) = (γI)a (3)

where γa = λ or γ = λ1/a. Note that a is still a dimensionless quantity, but γ is in
inverse units of I, such as 1

meters
for length, 1

meters2
for area, 1

days
for duration, for example.

Also, now γ is appealingly independent of a. Comparisons between a parameters and
between γ parameters are allowable in dimensional analysis; but, as we explain above,
comparisons of λ are not. This fix—moving the constant inside the power—is described
in Stewart et al. (2018).

To summarise, studies which have compared values of λ across or within individuals
are wrong because comparing quantities which are not in the same units is not permitted.
It is like comparing 7 metres with 8 seconds and asking which is bigger—nonsensical. Our
strong suggestion would be that for such studies, the λ parameter is transformed into γ
and the results be reinterpreted based on these values. The extent to which this may
be a problem, and the feasibility of this suggestion, is explored in the remainder of the
paper.

2 A case study in time perception and temporal dis-

counting

We illustrate the incompatible units problem in the domain of hot affective emotional
states. Multiple studies have found that when people undergo a hot affective state ma-
nipulation (e.g. by viewing sexually arousing stimuli) then their present bias increases
(Ariely & Loewenstein, 2006; Lemley, Asmussen, & Reed, 2015; Van den Bergh & De-
witte, 2008; Wilson & Daly, 2004). That is, they discount future rewards to a greater
extent, such that preferences shift toward smaller but sooner rewards compared to larger
but later rewards. But what are the cognitive processes that are responsible? Are peo-
ple’s temporal preferences altered in hot states1 because of changes in discount rates, or
because of changes in subjective time perception, or some combination of the two?

Regardless of the precise measure used, results of the above studies were interpreted as
changes in time discounting caused by the experimental hot state manipulation. Caution
must be expressed however as these results could have also been driven partly or wholly
by changes in subjective time perception. In an excellent series of studies, Kim and
Zauberman (2013) found a similar increase in present bias caused by hot state manipula-
tions, but, because they also measured subjective time perception, were able to conclude
that this change in present bias is driven by changes in subjective time perception rather
than changes in discount rates. They measured the relationships between subjective time
perception and inter-temporal choice for money under control and hot states. In Study
1 they showed that male participant’s subjective time perception was altered by viewing
pictures of female lingerie models. They used a procedure to estimate perceived dura-
tions from objectively stated durations according to Stevens’ Power Law (see Equation 1,

1Hot state does not have a technical definition, but it refers to a joint physiological and phenomeno-
logical state of affairs, often induced by sexual arousal.
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where I is measuring the duration). Participants indicated subjective time by adjusting
the length of a line on the computer screen, relative to a reference duration of 1 month
corresponding to 32.71mm), therefore the units of I was in mm. This resulted in group
level fits of ψ(I) = 0.998 I0.68 for the hot condition and ψ(I) = 0.610 I0.73 for the control
condition.

One conclusion drawn by the researchers was that participant’s subjective time per-
ception was sublinear2— based upon the point estimates of the exponents both being
below 1, and a non-significant difference between these exponent parameter values. Be-
cause the exponent is unitless, this conclusion is not affected by any units problems.

A second conclusion was that perceived time increased in the hot state, such that
a fixed duration was perceived as longer. The scaling parameter (λ in our Equation 1)
increased from the control to experimental condition. This comparison of λ values is
not valid, undermining the conclusion that changes in subjective time perception were
responsible. As we have seen, the λ parameters are in units which are also affected
by the exponent. Specifically, the group level constant for the hot condition is λ =
0.998mm−0.68 (i.e. units of mm−0.68), and λ = 0.61mm−0.73 (i.e. units of mm−0.73) for
the control condition. These constants are in different units and therefore cannot be
compared. Likewise conducting t-tests or ANOVAs on λ values for participant level fits
is also illegal, as they are all units of mma where a is different for each participant.
Instead, λ should be transformed to γ (for each participant, which requires the λ and
a values for each participant). So even though there were non-significant differences in
a in the control and hot state groups, the a values will have been different for each
participant, and we do not know whether group differences would have been significantly
different (at a threshold p–level) when comparing the fitted γ values across control and hot
conditions. The best we can do without the participant-level data or parameter estimates
is to compute γ at the group level. This results in γhot = 0.998(1/0.68) = 0.997 and γcontrol =
0.610(1/0.73) = 0.508, but these are just point estimates so we have no way to verify if
their are statistically significant differences between γhot and γcontrol. This is also a highly
dubious operation—as we will discuss in more detail later in the paper, transforming
(λ, a) to (γ, a) parameters for group level summary statistics is invalid because a will
vary across participants. And so we are unfortunately left with uncertainty about the
effect of the hot state manipulations in this experiment on subjective time perception.

Our intention is to point out that we simply cannot make claims based on the com-
parison of quantities with different units. We do not intend to cast doubt upon the role
of subjective time perception in hot state manipulations. Indeed, the basic claim seems
reasonable given the findings of a previous study (Zauberman, Kim, Malkoc, & Bettman,
2009) which modelled subjective time with the Webber-Fechner Law (which bypasses
these concerns) rather than Stevens’ Power Law.

3 Implications for delay discounting

This units problem is not just restricted to Stevens’ Power Law and magnitude estima-
tion. In the remainder of the paper we outline how this problem filters through into the
temporal discounting literature in multiple ways. First we demonstrate that Rachlin’s

2Technically this should be referred to as a monotonically increasing but decelerating function.
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popular discount function suffers from the units problem and we propose a fix. Second,
we demonstrate that the popular hyperbolic discount function may also suffer from this
problem despite superficially escaping the incompatible units problem.

Here, we illustrate these problems in the domain of inter-temporal choice (also known
as delay discounting). The core phenomena of interest here is how agents make trade-offs
between the magnitude of a gain (or a loss) and the immediacy of that. For example,
the present subjective value of £100 now is greater than £100 in 40 years because future
rewards are discounted by some fraction. This could be driven by many reasons including
inflation expectations, risk of future rewards not materialising, opportunity costs etc.
But how exactly are decisions made about outcomes which occur at different points in
time? The general utility-based approach to answering this is to propose that our present
subjective value V of a reward R at a given delay D is given by

V (R,D) = u(R) · f(D) (4)

where u(R) is a utility function relating objective rewards R to subjective values, and
f(D) is a discount function which modulates our subjective values as a function of delay.
In the discounting literature it is common to assume a linear subjective value function,
i.e. the identify function u(R) = R in which case u(R) is in units of pounds, euros,
dollars, etc. The focus is instead upon the form of the discount function f(D) which we
will explore below.

There are a range of popular discount functions which do not suffer from these unit
comparison problems:

• Exponential discounting (Samuelson, 1937) where f(D) = exp(−kD). D is in time
units (e.g., days). Here k is in inverse time units of this (e.g., days−1).

• Constant sensitivity function (Ebert, Prelec, & Prelec, 2007) where f(D) = exp
(
−(aD)b

)
.

Here a is in inverse time units, and b is dimensionless.

• The Myerson and Green (1995) hyperboloid where f(D) = 1/(1 + kD)s. Here k is
in inverse time units and s is dimensionless.

• Double exponential (McClure, Ericson, Laibson, Loewenstein, & Cohen, 2007)
where f(D) = ω exp (−k1D) + (1 − ω) exp (−k2D). Although this model might
more accurately be called a ‘mixture of exponentials’. The mixture component ω
is dimensionless and k1 and k2 are in inverse time units.

Nevertheless even if a discount function’s parameters does not suffer from the incom-
patible units problem, when comparing parameter values (such as k) across participants,
conditions, or studies, it is important to ensure that they are all in the same units. For
example, if the unit of time is days in one paper and years in another, then the ks can-
not be compared because one will have units of days−1 and the other will have units
of years−1. It is only allowable to compare k values in the same units. Because dis-
count rates vary drastically across species (half lives (1/k) range from seconds to years
or decades; Vanderveldt, Oliveira, & Green, 2016) this mistake could easily be made in a
meta analysis, for example.
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3.1 Implications for Rachlin’s delay discounting function

Some discount functions suffer from a class of problem where fitted parameters are un-
knowingly in different units and therefore are not comparable. This problem affects two
prominent discount functions. The first is exponential discounting of subjective (i.e.
Stevens’ power law scaled) time (Takahashi, Oono, & Radford, 2008)

f(D) = exp (−kDs) (5)

where θ = [k, s], and the second is the prominent Rachlin (2006) hyperboloid model3

equating to hyperbolic discounting of (Stevens’ power law scaled) subjective time,

f(D) = 1/(1 + kDs). (6)

We proceed to illustrate the issues with the Rachlin discount function given its frequent
use in the discounting literature, but the issues we highlight also affect Equation 5 (see
Appendix A).

S is a power — a unitless real number. This means that comparison of fitted values or
posterior distributions of s across participants or studies is allowable under dimensional
analysis, as s has the same units (in this case, no units). Of course, there may be other
issues around parameter trade offs that make this comparison hard.

However a units problem does arise with the k parameter. Because D is in units of
days (for example) then this means that Ds is in units of dayss. This follows because
f(D) is a unitless fraction, which means the right hand side of Equation 6 must also be
unitless. As the numerator 1 is unitless, the denominator 1 + kDs must also be unitless.
The (kDs) term must be unitless, because it is added to 1, which has no units, and
one can only add quantities with the same units. This means that k must have units
of 1/dayss to cancel with the units of Ds. Given that s will vary across participants,
then you cannot compare k across participants as they are all in different units. For
example, when s = 1 then k has units of 1/days but when s = 1

2
then k has units of

days−
1
2 = 1/

√
days.

Based upon our proposed fix to Stevens’ Power Law (Equation 3), we propose the
modified-Rachlin discounting function:

f(D) = 1/(1 + (κD)s) (7)

where θ = [κ, s], and κs = k or κ = k1/s. Note that s is still a dimensionless quantity,
but κ is in units of days−1, which is appealingly independent of s. Comparisons between
s parameters and between κ parameters are allowable in dimensional analysis; but, as
we explain above, comparisons of k parameters are not. Our fixed-Rachlin function is

3We illustrate how Rachlin’s discount function is derived from hyperbolic discounting of subjective
time perception according to Stevens’ Power Law. First we start with hyperbolic discounting of subjective
delay, f(D) = 1/(1 + kψ(D)), where ψ(D) is subjective time delay. If we substitute in Equation 1 we
obtain f(D) = 1/(1 + k′λDs). We see that Rachlin’s k (Equation 6) is the product of actual discount
rates k′ and the subjective time scaling parameter, k = k′λ. To be clear, the k parameter in the Rachlin
model conflates the discount rate (k′) and a subjective time scaling parameter (λ) and it is not possible
to identify their values from discounting data alone. Instead, this would require both inter-temporal
choice experiments and subjective time perception measures for each participant.
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still able to be interpreted in terms of hyperbolic discounting of subjective time because
1/(1 + (κD)s) = 1/(1 + kDs).

The modified-Rachlin function has a number of advantages. First and most obviously,
it now becomes legitimate to compare discounting behaviours (using κ) across partici-
pants with different subjective time perception (as specified by s). This is a significant
advantage because previous comparisons of k across participants or studies will in fact
be invalid because they are contaminated by varying values of s.

Second, the κ parameter is now conveniently always equal to the inverse half life (the
delay at which a reward is equal to half its objective value) regardless of the value of s.
(See this by noting that the delay Dhalf at which the value of the reward is halved can
be substituted into Equation 7 to give 1

2
= 1

1+(κDhalf)s
which means 2 = 1 + (κDhalf )

s and

1 = (κ ×Dhalf )
s and 11/s = κ ×Dhalf and thus 1 = κ ×Dhalf .) This was an appealing

property of the discount rate in the hyperbolic discount function (Mazur, 1987), but
which was lost in the original Rachlin function.

Third, parameter estimation of (κ, s) will be improved and more robust. The top panel
in Figure 1 shows some simulated data from a delay discounting experiment. The bottom
panels show likelihood surfaces for the parameters of the Rachlin and modified-Rachlin
discount functions for a single simulated experiment. There is a very clear parameter
trade-off which occurs with Rachlin’s discount function, as seen by the negatively sloped
ridge in the likelihood surface (Figure 1 bottom left). These parameter trade-offs are not
noticeable in methods which estimate only point estimate parameters (e.g. Gilroy, Franck,
& Hantula, 2017), only those which estimate the full likelihood or posterior surface over
parameter space (such as Vincent, 2016). However, parameter correlations across partic-
ipants have been noted in modelling work (such as Peters, Miedl, & Büchel, 2012). This
disappears in the likelihood surface of the modified Rachlin function (Figure 1 bottom
right). This is especially appealing in the context of Bayesian parameter estimation—the
highly anti-correlated structure of the likelihood surface in Figure 1 (bottom left) could
pose challenges for some sampling algorithms to accurately estimate the true posterior
distribution (see Stewart et al., 2018).

Fourth, a direct consequence of this ridge in the likelihood surface is that errors
in estimating the maximum likelihood estimates of true (k, s) parameters will contain
undesirable correlational structure. Figure 2 (top) shows the distribution of maximum
likelihood estimates from a parameter recovery simulation—200 simulated experiments
were run with stochastic choices and maximum likelihood estimation of an observer with
fixed parameters. Because the 200 observers were identical, with fixed (k, s), scatter of
the estimates away from the true (k, s) crosshairs represents error in parameter recovery
which is caused by the stochasticity of the binary responses to the choices. The result is
that errors in the maximum likelihood parameters are undesirably correlated. Figure 2b
shows that the modified-Rachlin function fixes this problem, we no longer have this
parameter trade-off in the maximum likelihood estimates.

We propose that existing research with (k, s) estimated from the Rachlin function
can, and should, be transformed to our modified parameters (κ, s) so that comparison
between participants and studies become valid and relevant. This transformation is a
valid approach—we found that a maximum likelihood procedure to estimate (k, s) are
accurate, and map on precisely (after the κ = k1/s transformation) to parameter estimates
of (κ, s) directly (see Figure 2c, d). The correlation coefficient between s estimated from
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Figure 1: Likelihood surfaces of the simulated data (top) where (k = exp(−3), s = 0.7) for the Rachlin
model (bottom left; Equation 6) and modified Rachlin model (bottom right; Equation 7). Experimental
designs (rewards and delays) were generated using the adaptive procedure described by Frye et al. (2016).
See Appendix B for simulation details. The code to generate this figure is available at https://osf.io/
uscmd/.

the Rachlin and modified Rachlin function was virtually equal to 1, within 5-6 decimal
places. This was also the case for the correlation coefficient between κ (transformed
from the k recovered from the Rachlin function) and the κ recovered from the modified
Rachlin function. This is good news—assuming rigorous maximum likelihood estimation
procedures were followed, we do not believe that estimation with the Rachlin function
would introduce systematic errors in the actual parameters estimated, just that the k
parameter is contaminated as described above. If there is doubt however about the
accuracy of past maximum likelihood procedures, the most prudent approach would be
to estimate (κ, s) directly from the archived raw intertemporal choice data.

To probe this mapping between (k, s) and (κ, s) further, we repeated the parameter
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Figure 2: Robustness of ML estimation to stochastic response data. A set of 200 experiments (akin to
that shown in Figure 1) were conducted on a simulated participant with fixed true parameter values
(shown by crosshairs; k = exp(−3), s = 0.7, thus κ = exp(−3)1/0.7) and stochastic responses. Maximum
likelihood estimation was used to estimate parameters for the Rachlin (panel a) and modified Rachlin
(panel b) functions. Points represent the maximum likelihood parameters for each simulated dataset.
The parameter estimation procedure was found to be robust—conducting MLE on data using the Rachlin
or the modified Rachlin functions will result in identical maximum likelihood estimates, see main text
for details. This was demonstrated by near perfect correlations between s from both equations (panel
c) being almost exactly 1, and likewise for k transformed to κ, and κ (panel d). See Appendix B for
simulation details. The code to generate this figure is available at https://osf.io/uscmd/.

recovery approach (from Figure 2) but extended this for multiple true parameter values in
Figure 3. Figure 3 shows true parameter values chosen from a grid over (κ, s) space, along
with recovered parameter values using maximum likelihood estimation. The results are
in line with the intuition from Figure 2, that there is a straight 1-to-1 mapping between
(k, s) and (κ, s) parameter spaces. That is, it should be possible to accurately map to
(κ, s) directly from existing estimates of (k, s) obtained from Rachlin’s function. There
are two concerns which remain however.
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Figure 3: Comparing the Rachlin (k, s) and our modified Rachlin (κ, s) parameter spaces. Panel (a) shows
a series of discount functions with parameter values uniformly spaced in modified-Rachlin parameter
space (κ, s) (black points in (c)). Different colours represent different true κ values, and saturation
represents different s values. Corresponding true parameter values in the Rachlin (k, s) space are shown
in panel (b) – comparing panels (b) and (c) shows the nature of the mapping between (k, s) and (κ, s).
Coloured points in (b) & (c) correspond to inferred parameter values based on simulated experiments. We
can see that the inferred parameters are centred on the true parameter values (black points). The change
in estimation precision over the parameter space is caused by the ability of the simulated adaptive delay
discounting procedure to constrain the plausible parameter values. Panels (d) and (e) show histograms
of inferred k and κ values respectively for simulated participants with fixed true κ values. We can see
that the inferred κ values are independent of s, but the inferred k values are contaminated by s, and so
group level inferences about k will be skewed by participants with varying s values. See Appendix B for
simulation details. The code to generate this figure is available at https://osf.io/uscmd/.
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The first concern is that when past results are re-examined and k, s is transformed
into κ, s, this may well merit reinterpretation of existing findings in the literature. For
example, differences between k between groups or conditions could have been interpreted
(wrongly) as relevant differences in discount rates between participants, groups, or con-
ditions. But because k is contaminated by s, these differences could have been caused by
changes in subjective time perception. This is clear to see in Figure 3(a–c). As stated, κ
is unrelated to s and corresponds to the inverse half life4. It is clear from Figure 3 (b),
that increases in k could either be caused by an increase in k while s remains constant, or
by k remaining constant, and a decrease in s. This should hopefully underscore the im-
portance of revisiting published studies which make theoretical claims about discounting
behaviour on the basis of changes in k obtained from Rachlin’s hyperboloid function.

Our second concern is that conversion of existing parameter estimates of (k, s) from
the Rachlin discount function to our proposed (κ, s) parameterisation should be done
with care. As we eluded to in the case study above, this conversion is only valid when
conducted on participant level parameters, not on group mean or median parameter
values. To get a sense of why this is the case, we can see from Figure 3 b that group
mean or median values of k will be disproportionately influenced by participants with
high s values. This is shown further in the histograms Figure 3 d-e. For example,
consider a number of participants with the same discounting behaviour (same values of
κ) but with different subjective time perception (different values of s). If we fit with the
modified-Rachlin function, then our group level estimate of average κ will be accurate
and independent of the varying s values. However, if we fit the same set of participants
(ie a column of points) with the Rachlin function then our group level estimate of k will
be undesirably influenced by the variation of s. To summarise, researchers wishing to
convert (k, s) parameters into our proposed superior (κ, s) parameter space must do so
on a participant level, not on a group mean or median level.

3.2 Concerns extend to hyperbolic discounting

We also propose that a related problem may befall the accuracy of the discount rate
obtained from the classic hyperbolic5 discount function (Mazur, 1987)

f(D) = 1/(1 + kD) (8)

where θ = k. Superficially, this function does not suffer from the incompatible units
problem—k is simply in units of days−1 (or 1/k is measured in days) and we can compare
k values across participants. Or can we?

Our core concern is that we may not be able to draw relevant conclusions about time
discounting from changes in discount rates k from the hyperbolic discount function, either
within participant changes from condition to condition, or between participants. If this
concern is valid, this may have broad consequences which may require revisiting previous
results.

4Although κ is still the product of both a discounting process and the constant term in Steven’s Power
Law.

5Equation 8 is not actually a hyperbolic function, but we will stick with this convention as it has been
adopted wholesale in the discounting literature. We refer the reader to (Rasmusen, 2008) for further
insights on this point.
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The problem revolves around the fact that the Mazur (1987) hyperbolic discount
function is a special case of the Rachlin discount function6 when the exponent s equals
1. So if it actually is the case that people hyperbolically discount subjective time (s 6=
1) rather than objective time (when s = 1), then analyses based upon the hyperbolic
discount function will suffer from the omitted-variable problem. Expecting that papers
all contain accurate and comparable estimates of k just because the unit of k does not
contain s is not a good solution. If s differs across participants but is left out of our model,
all of our k values will be differently systematically biased, and thus not comparable.

We propose that this is a real problem. Claims about discounting behaviour (i.e.
choices made in inter-temporal choice tasks) previously attributed to changes in discount
rates, but may have been partly down to changes in subjective time perception. For ex-
ample, one of the most highly cited empirical works on delay discounting shows that dis-
counting is higher in current smokers than ex-smokers, than never smokers (Bickel, Odum,
& Madden, 1999). However we also have empirical support for atypical time perception
in addictive disorders (stimulant-dependent participants over -estimate time), with the
explicit suggestion that this may influence broad lack of impulse control (Wittmann, Le-
land, Churan, & Paulus, 2007). On the other end of the spectrum, patients with anorexia
nervosa display some of the lowest observed discounting behaviour (Bartholdy et al., 2017;
Decker, Figner, & Steinglass, 2015; Steinglass et al., 2012) also under -estimate time (Vi-
cario & Felmingham, 2018). So to what extent is this discounting behaviour caused
by changes in discount rates versus subjective time perception? We therefore mirror
the call of Kim and Zauberman (2018) that research needs to disentangle the relative
contributions of subjective time perception and discount rates. Until we have a clearer
understanding here, it may be premature to claim that changes in discounting behaviour
is straightforwardly attributable to changes in discount rates alone.

In order to estimate the extent of the problem, we conducted further simulations.
Figure 4 shows the degree of bias in the hyperbolic discount rate k parameter as a function
of true (κ, s) parameters from the modified Rachlin function. For simulated observers
who have linear time perception (s = 1; equal to hyperbolic discounting) we can recover
discount rates with no systematic bias. Worryingly, we find systematic biases in the
estimates of k for observers who do discount subjective time (s 6= 1). We see systematic
overestimates of k for decelerating time perception (s < 1) and systematic underestimates
of k for accelerating time perception (s > 1). These biases are not subtle—for example,
a normalised estimate of +2 means kestimate is twice the true κ value, and a normalised
estimate of -0.5 means kestimate is half of the true κ value. These simulations suggest
that if we accept that subjective time perception influences preferences in inter-temporal
choice tasks, and that participant’s subjective time perception is uncontrolled for, then
claims of changes in discount rates could be conflated with subjective time perception.

One line of evidence suggests that this may be a real problem for conclusions based on
hyperbolic discount rates alone. When discount functions are pitted against each other to
explain inter-temporal choice behaviour, 2–parameter hyperboloid models (including the
Rachlin hyperboloid) fit behavioural data better than the hyperbolic model (McKerchar
et al., 2009). That study only assessed goodness of model fit however and did not assess
either fit to out-of-sample data (e.g. as in cross validation) or compare model metrics

6And of the Myerson and Green (1995) hyperboloid: f(D) = 1/(1 + kD)s
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Figure 4: Estimation biases of k from the hyperbolic discount function, based upon inter-temporal
choice data for simulated observers who discount according to the modified-Rachlin function. Each
point represents a simulated observer with a true κ corresponding to the x-axis position and true s
value as shown by the colour (see legend). The y-axis shows normalised error kestimated/κtrue such
that a value of 1 means no error. We see no systematic bias when observers discount linear time,
s = 1. But we see systematic underestimates for accelerating time perception (s > 1) and systematic
overestimates for decelerating time perception (s < 1). The code to generate this figure is available at
https://osf.io/uscmd/.

which add a penalty for the additional parameter. Franck, Koffarnus, House, and Bickel
(2015) did however report BIC (Bayesian Information Criterion; which penalises models
with more parameters) scores for fits to individuals. They report the proportion of
participants for which a range of models were the most probable to have generated the
data as: Rachlin (34.3%), Myerson and Green (27.0%), hyperbolic (18.0%), Laibson
(10.8%), exponential (8.1%), and a control model (1.8%). Given the hyperbolic discount
function was the most probable model for only 18.0% of participants, this is not strong
support for linear subjective time perception. This suggests that in many cases s 6= 1
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and so estimates of k from the hyperbolic discount function will be contaminated by
subjective time perception and not solely reflect discounting processes. This potentially
poses a problem for some established findings in the discounting literature based upon
participant, group, or condition differences in k values from the hyperbolic discount
function.

A second line of evidence can be drawn from the Kim and Zauberman (2013) and
Zauberman et al. (2009) studies we have already seen. Taken together these studies
provide compelling evidence that subjective time perception is decelerating , and varies
across participants and/or experimental conditions. We propose that this may be a seri-
ous issue—previous results claiming that inter-temporal choice is affected by discounting
may need to be revisited in order to assess the the confound of subjective time perception.

3.3 Plotting log parameter values

Before we conclude, we add a note on plotting or reporting transformed parameter values.
Researchers often report, or plot, the logarithm of the k parameter from the hyperbolic
discounting model, log(k). But what is log(k)? Following dimensional analysis leads us
to the answer. Recall that k is the inverse half life in the hyperbolic discounting model.
That is, k is the inverse of the number of days it takes for the present value to be half
that of the delayed outcome: If it takes 10 days for the value to drop by half, then
k = 1/10 per day. Dimensional analysis requires that the number to which a logarithm
is applied is unitless. For this reason, a standard reference level is required. The level
can be set at any value (e.g., kreference = 1 per day or kreference = 3.141592654 per day, or
any value). However if researchers just take the logarithm of the numerical value of k
without regard to the units, they have effectively selected a reference value of 1 unit. In
this example for k, that would be a reference level of kreference = 1 per day.

For example, say k = 2 per day and suppose the experimenter is using logarithms to
the base 10. log10(2) = 0.30103. But this number 0.30103, which is “log10(k)”, really

should be written as log10

(
2 per day
1 per day

)
= 0.30103. This means that k = 2 per day is

100.30103 = 2 times larger than the reference level of k = 1 per day. And with natural

logarithms loge

(
2 per day
1 per day

)
= 0.6931472. This means that k = 2 per day is e0.6931472 = 2

times larger than the reference level of k = 1 per day.
Although log(k) has no units, it should be understood is a logarithm of the number

of times larger k is than some reference level k. So when reporting or plotting log(k) or
log(κ), one should report the base of the logarithm.7

7Perhaps the most prominent example of this is the reporting of sound levels on the decibel scale.
For example the ear-drum-rupturing 150 dB level of a jet at takeoff at a distance of 25m, often reported
as “150 dB” is really “150 dB SPL” or “150 dB sound pressure level”. Sound pressure level Lp =

20 log10

(
p
p0

)
, where p is the sound pressure level of the jet measured in any unit of pressure and p0 is

the reference level, measured in the same unit. p0 is typically set at 20 µPa or 20 micro Pascals (which
Wikipedia says the loudness of a mosquito flying 3 m away). This means that the “150” means the jet
at 25 m is 10150/20 = 31, 622, 777 times louder than a mosquito at 3 m.
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4 Conclusions

The importance of the units of psychological parameters in perceptual and cognitive
models is underappreciated. This has led to the muddled units problem where researchers
illegally compare parameter values with different units. Further, this causes parameters
to become polluted by other parameters, which changes their meaning and interpretation,
potentially invalidating research conclusions.

We have illustrated the problem with Stevens’ Power Law and proposed a simple-to-
implement re-paraterisation which can (a) allow past research to be reevaluated, and (b)
avoid the parameter incompatibility problem in the future. We have also show how the
problem affects the study of subjective time perception and temporal discounting. Using
simulations, we demonstrated this using the Rachlin temporal discounting function, and
show how the units of the temporal discounting parameter are contaminated by the units
of the subjective time perception parameter, and show how our re-paraterisation avoids
this problem.

More subtle, but still deeply problematic, is that the units issue may well afflict mod-
els which superficially avoid the parameter identification problem. This was illustrated
with the hyperbolic discount function, which is used very often in the delay discounting
literature.

We end with a series of important, but potentially alarming, recommendations in
relation to cognitive modelling. First, researchers should routinely report the units of their
psychological parameters. This will help reduce the possibility of erroneous comparison
of parameter estimates in different units. Ideally this reporting will apply to both axis
labels of plots in parameter space as well as reporting of parameter values in tables or the
main text. For example, reporting that k = 0.5 is not sufficient; reporting k = 0.5 days−1

or k = 0.5 per day is preferred. It is also typical to report log transformed k values
(ln(k)). While log transformed values have no units, they do have a base which does have
units and the base and its units should be reported. The same goes for κ or ln(κ) in our
modified Rachlin discount function.

Our second recommendation is that cognitive modellers might routinely consider the
units of their models during model formulation, in order to avoid the incompatible units
problem. For example, in the Introduction, we show that Stevens’ Law is not dimension-
ally correct, but that Fechner’s Law is.

Our third recommendation is for the readers of the existing literature. When inter-
preting existing models, and especially their parameterisation and parameter estimation,
readers should have in mind the units of the parameters. If there is a problem, then a
solution involving re-parameterisation needs to be found and this may necessitate revis-
iting the theoretical claims made. For example, in conducting a meta-analysis of loss
aversion, Walasek, Mullett, and Stewart (2018) had to obtain the raw choice-level data
and re-estimate prospect theory’s loss aversion parameter for each participant. For any
non-linear re-parameterisation, transforming group level average parameter values will
not be sufficient.

We also have recommendations relating to delay discounting and subjective time per-
ception. Our fourth suggestion is that exponential discounting of power-scaled subjective
time (Takahashi et al., 2008) should be disfavoured and treated with caution. Instead,
focus should be placed on the constant sensitivity function (Ebert et al., 2007, see Ap-
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pendix A), or on exponential discounting of Weber-Fechner time perception (which is
equivalent to the Myerson (2004) hyperboloid (Takahashi et al., 2008)). And finally,
fifth, we suggest that researchers should switch to using our modified Rachlin discount
function from this point onwards. Published research findings based upon participant,
group, or condition differences in the contaminated discount rate parameter (k) from
Rachlin’s discount function may need to be re-examined (Jones & Rachlin, 2009; Kralik
& Sampson, 2012; Mazur, 2007; Myerson, Green, & Morris, 2011; Peters et al., 2012;
Schneider, Peters, Peth, & Büchel, 2014).

A Fix for exponential discounting of power scaled

time

For the sake of completeness, our proposed fix to the exponential discounting of (Stevens’
power law scaled) subjective time (Takahashi et al., 2008) would be

f(D) = exp (−(κD)s) (9)

where κ and s are parameters. Our proposed fix is in fact equivalent to the constant
sensitivity function of Ebert et al. (2007).

B Simulation methods

The code to generate the figures is available at https://osf.io/uscmd/. We used the
Python programming language, version 3.6 (Python Software Foundation, https://www
.python.org/).

B.1 Experimental design

Our simulated inter-temporal choice tasks used the heuristic adaptive experimental de-
sign procedure described by Frye et al. (2016) to select pairs of immediate and delayed
prospects. Each experimental trial consisted of an immediate prospect PA = (RA, DA)
and a delayed prospect PB = (RB, DB), each of which consists of a reward R and a delay
D. Prospect A was always immediate, so PA was always equal to 0. We defined 8 valid
delay levels, DB could take on values of 1, 2, 7, 14, 30, 30× 3, 365, 365× 5 days, and we
used 8 trials per delay level. This resulted in each simulated experiment consisting of 64
trials. In summary, the choice presented to the simulated participant was between PA

and PB). Responses were generated as a biased coin flip (Bernoulli trial), see below.

B.2 Likelihood methods

We used maximum likelihood estimation methods for parameter estimation. We either
evaluate the likelihood over a grid of possible parameter values (grid approximation),
or we use a maximisation procedure to maximise the probability of the data given the
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parameters. Practically, we minimised the negative log likelihood of the data being
generated by a given set of parameters θ

NLL = −ΣT
t=1 log(P (datat|θ)). (10)

The likelihood of the data on a trial for given parameters was modelled as a biased coin
flip, i.e. a Bernoulli trial,

P (datat|θ) = Bernoulli(P (Rt = 1|PA
t , P

B
t , θ)). (11)

where P (Rt = 1|PA
t , P

B, θ) is the probability of choosing PB
t (coded as Rt = 1).

We defined the data as

datat = (PA
t , P

B
t , Rt). (12)

where PA and PB are prospects (see above) and Rt is the response on trial t of T trials
in total.

We defined the response probability as

P (Rt = 1|PA
t , P

B, θ) = ε+ (1− 2ε) · Φ
(
V (PB

t )− V (PA
t )

α

)
. (13)

In the second term, Φ is the standard cumulative normal distribution which forms a
psychometric function mapping the difference between present subjective values of the
rewards to a response probability. We set a fixed value of α = 4, which is the slope of
this psychometric function and can be thought of as a ‘comparison acuity’ parameter—
lower values mean greater response accuracy for prospects with similar present subjective
values (see Vincent, 2016, for details). The first term deals with response errors, where
ε was fixed at 0.01. The function V (P ) converts a prospect (consisting of a reward and
its delay) into a present subjective value (see Equation 4). We assume a linear value
function, u(R) = R as is common in the discounting literature.
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